

Final Progress Report
Grant # - DAAD19-02-1-0455

A JDBC Driver Supporting Data Source Integration and Evolution

Statement of the Problem Studied

The problem studied is how to rapidly integrate information from multiple data sources. Current approaches
perform integration [Halevy01] by building a global view and then mapping queries on the global view to the
data sources. Building a global view is still performed using manual techniques [Batini86]. Thus, integration is
costly and time-consuming because building a global view is a bottleneck in the process. Further, although
many integration systems and prototypes have been developed [Goh99,Kirk95,Li98], none have remained as
viable, usable products. The reason for this is that they were built using proprietary technology and require
expertise out of the realm of most developers and users.

The goal of this research is to demonstrate that practical, rapid information fusion can be achieved by:
 Building an integration architecture using common industrial standards such as Java and Java DataBase

Connectivity (JDBC).
 Developing a system for documenting data source contents so that they can be rapidly shared and integrated.
 Defining a high-level query language that allows users to specify the concepts they want without indicating

how to retrieve them. The language must hide integration details and be easier to use than SQL.
 Supporting "real data" by handling data inconsistency, incompleteness, and outlying data such that data

mining and decision support systems can identify meaningful outlying data that is not filtered out by the
integration system.

The research product of this project is a JDBC driver that allows for Java programs to transparently query data
sources without specifying structural queries (SQL). Programs and users specify semantic queries to the JDBC
driver that translates the high-level queries into SQL queries for the appropriate data sources. This automatic
translation process performed by the driver isolates users and applications from the complexity of multiple data
source querying and allows the applications to function in the presence of schema evolution of the underlying
data sources.

Summary of Important Results

The major product of this research is a JDBC driver (see Figure 1) capable of integrating multiple data sources.
The JDBC driver processes high-level user queries and converts them to queries on multiple databases.
Information from the multiple databases is fused together and presented to the user. A unique feature of the
driver is that it supports data inconsistency. Information that is inconsistent across the databases is highlighted
and can be used to determine data deserving further investigation.

This proof of concept implementation demonstrates that it is feasible to integrate databases using a JDBC
driver. Using the driver, Java applications can be rapidly developed that extract information from multiple
sources. Since the query language does not force the user to reference particular databases, tables, or fields,
developing an application that access multiple databases is no more complex than developing an application
that accesses a single database. Further, the system supports data source evolution as the mapping process
performed inside the driver allows the databases queried to change without affecting user queries.

Figure 1. Unity JDBC Driver Architecture

The major important results are:
 A JDBC driver implementation based on the Unity architecture [Lawrence01], called UnityDriver, that

supports multiple database querying.
 Demonstration of how UnityDriver can be used as platform for developing applications for performing data

mining and information fusion.
 A high-level query language allowing users to easily query multiple databases.
 A mapping algorithm for converting high-level queries into SQL and integrating results returned.

There are two keys to the success of the integration. First, databases are annotated with more information so
that the concepts in them can be more rapidly compared. One of the keys to successful integration is assigning
meaningful names, so that users can query on familiar names rather than obscure system names. The second
key is the ability to automatic insert local and global joins in a user query. A user may request the system:
“return all soldiers who have chemical training and are currently stationed in Iraq”. The system would
determine where those concepts are in the underlying databases and how to combine joins within and across
databases to answer the user query without the user’s involvement. The algorithms for automatic join
determination are unique to this work and will be the subject of future publications.

Publications and Reports

The JDBC driver implementation can be downloaded at http://idealab3.cs.uiowa.edu. Included is
documentation on how to use the driver and sample programs. The driver was tested on integration problems.
The test programs can be used over the Internet and are available at http://idealab3.cs.uiowa.edu.

A description of the JDBC driver implementation will be made available in a University of Iowa technical
report and will be submitted for publication in 2004.

Participating Researchers and Supported Students

 Dr. Ramon Lawrence - Principal Investigator
 Terry Mason - Ph.D. student
 Jian Jia - Master's student - completed degree while working on the project

Bibliography

[Batini86] Batini, C., Lenzerini, M. and Navathe, S. (1986) A Comparative Analysis of Methodologies for Database
Schema Integration, ACM Computing Surveys, 18(4), pages 323-364.

[Goh99]Goh, C., Bresson, S., Madnich, S. and Siegel, M. (1999) Context Interchange: New Features and Formalisms for
the Intelligent Integration of Information, ACM Transactions on Information Systems, 17(3), 270-293.
[Halevy01] Halevy, A. (2001) Answering queries using views: A survey, VLDB Journal, 10(4), pages 270-294.

[Kirk95] Kirk, T., Levy, A., Sagiv, Y. and Srivastava, D. (1995) The Information Manifold, AAAI Spring Symposium on
Information Gathering.

[Lawrence01] Lawrence, R. and Barker, K. (2002) Using Unity to Semi-Automatically Integrate Relational Schema,
Demonstration at International Conference of Data Engineering (ICDE 2002), pages 329-330.

[Li98] Li, C., Yerneni, R., Vassalos, V., Garcia-Molina, H., Papakonstantinou, Y., Ullman, J., and Valiveti, M. (1998)
Capability Based Mediation in TSIMMIS, Proceedings of the ACM SIGMOD Conference, pages 564-566.

